

Level 6 Advanced Diploma in Data Science & Business Analytics(952) 210 Credits

Unit: Predictive Analytics with R	Guided Learning Hours: 300			
Evam Paper No + 5	Number of Credits: 30			
Prerequisites: Basic knowledge of R commands	Corequisites: A pass or higher in Diploma in Analytics			
Terequisites Busie kilo vieuge of Recommunds	or equivalence.			
Aim: The aim of the course is to harness the power and	agility of R in processing and analysing vast amounts out			
data. This data is increasing at exponential rate. The course provide skills required to build models using linear				
and logistic regression to enable better understanding ar	nd decision making in order to create value through			
analytic edge. R algorithm increase accuracy and calcul	ation speed in analysing both structured and unstructured			
Required Materials: Recommended Learning	Supplementary Materials: Lecture notes and tutor			
Resources.	extra reading recommendations.			
Special Requirements: The unit requires a combination of lectures, demonstrations, discussions, and hands-on				
labs.	ŝ			
Intended Learning Outcomes:	Assessment Criteria:			
1. Understand how data is transforming	1.1 Define analytics.			
business and how ability to effectively process data	1.2 Demonstrate R basic calculations.			
can create an analytics edge.	1.3 Be able to create advanced data structures			
	(Vectors and Data frames).			
	1.4 De able to load and save data mes.			
	catter plots plots and summary tables)			
	1.6 Be able to save script files.			
2. Understand the practical implementation of C	2.1 Demonstrate using structure function.			
basic data analysis using real life data.	2.2 Describe high-level statistical output			
	information.			
	2.3 Describe purpose of data analysis functions;			
	which.max(), names(), match() and sd().			
	2.4 Describe plot(), hist(), boxplot() arguments.			
$\sim 0^{*}$	2.5 Demonstrate adding variables to a data frame.			
	2.6 Describe table() and tappiy() functions.			
3. Understand the applications of linear	3.1 Describe dependent <i>vs</i> independent variables.			
regression in predicting/forecasting outcome variable	3.2 Describe linear positive/negative relationship.			
(dependent variable).	3.3 Define best fit method.			
	3.4 Describe regression equation.			
	3.5 Calculate linear regression using Least Square Method.			
-5 ⁷	3.6 Calculate R-squared.			
	3.7 Calculate Standard Error of the Estimates			
	(Mean Square Error).			
	3.8 Differentiate Sum of Square due to Error			
	(SSE), Total Sum of Squares (SST), Sum of			
	Squares (SSI), Sum of Squares due to			
	Regression (SSR).			
4. Understand implementation of linear	4.1 Compute correlations.			
regression using real life data to make predictions	4.2 Demonstrate making predictions through			
using models.	creating training and test data.			
	4.3 Describe coefficients.			
	4.4 Describe how analytics creates an edge using			
	linear regression.			
	4.5 Demonstrate to check linear relationship			

	4.6	Describe multicollinearity.
	4.7	Define overfitting.
		C
5. Understand application of analytics using		
classification through a technique called classification	5.1	Describe logistic regression (binary outcome).
through a technique called logistic regression.	5.2	Compile example of questions with binary
		outcome.
	5.3	Describe differences between linear and
		regression techniques.
	5.4	Describe the logarithm (log) expression.
	5.5	Describe multiple logistic regression.
	5.6	Describe sample.plit() function.
	5.7	Describe confusion/classification matrix.
	5.8	Explain Receiver Operator Characteristics
		(ROC)

Methods of Evaluation: A 3-hour essay written paper with 5 questions, each carrying 20 marks. Candidates are required to answer all questions. Candidates also undertake project/coursework in **Predictive Analytics with R**, with a weighting of 100%.

Ċ

Recommended Learning Resources: Predictive Analytics with R

Text Books	 R for Data Analysis in easy steps - R Programming essentials by Mike McGrath. ISBN-13 : 978-1840787955 Hands-On Programming with R by Garrett Grolemund. ISBN-13 : 978-1449359010 R for Data Analysis by Scott McCoy/ISBN-13 : 978-1943873036
Study Manuals	BCE produced study packs
CD ROM	Power-point slides
Software	R Studio
Business	

Advanced Diploma in Data Science & Business Analytics (951) - Predictive Analytics with R